
July 2, 2004 17:31 WSPC/117-ijseke 00164

International Journal of Software Engineering
and Knowledge Engineering
Vol. 14, No. 3 (2004) 323–349
c© World Scientific Publishing Company

AN ONTOLOGY FOR THE MANAGEMENT OF SOFTWARE

MAINTENANCE PROJECTS

FRANCISCO RUIZ∗, AURORA VIZCAÍNO†, MARIO PIATTINI‡ and FELIX GARCÍA§

Alarcos Research Group, Escuela Superior de Informática,

Universidad de Castilla-La Mancha, Paseo de la Universidad 4, 13071 Ciudad Real, Spain
∗Francisco.RuizG@uclm.es
†Aurora.Vizcaino@uclm.es
‡Mario.Piattini@uclm.es
§Felix.Garcia@uclm.es

Submitted 10 February 2003
Received 12 December 2003
Accepted 20 December 2003

Different proposals exist to represent the software maintenance process. However most
of them are very informal or too focussed on a specific goal. We have developed a
semi-formal ontology where the main concepts, according to the literature related to
software maintenance, have been described. This ontology, besides representing static
aspects, also represents dynamic issues related to the management of software mainte-
nance projects. In order to develop an ontology a suitable methodology should also be
followed. REFSENO was the methodology used in this work. The ontology that this work
presents is not a preliminary idea but it has already been used in software maintenance
environments, such as MANTIS, which is currently working successfully.

Keywords: Software maintenance; software projects management; ontology; REFSENO.

1. Introduction

Many studies [7, 40] have demonstrated that the majority of the overall expenses

incurred during the life-cycle of a software product, occur during the maintenance

stages. Thus, in recent years, researchers have focussed their attention on looking

for techniques which help to increase the efficiency of the Software Maintenance

Process (SMP).

One way to improve maintenance quality and decrease maintenance costs is

to reuse previous information and knowledge [32]. However, for information to be

usable it needs to be modelled, structured, generalised and stored in a reusable

form, with the goal of allowing effective retrieval [2].

†Contact author.

323

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

324 F. Ruiz et al.

In order to decrease the efforts and costs of the SMP we developed MANTIS [45],

an “extended software engineering environment” to manage maintenance projects.

The ontology presented in this paper is one of the four elements of the MANTIS

conceptual framework. The other three are a multilevel conceptual architecture, a

processes system, and a collection of metamodels. Now a new component, called

the KM module, is being added to MANTIS. This module is in charge of fostering

the reuse of all information, knowledge and expertise generated during the SMP.

KM-MANTIS is based on the experience factory concept [3, 4] since it is known that

an organisational memory must be maintained by an organisational unit, which is

separate from the project organisations. This is because it is mainly concerned with

keeping to schedules and cost constraints, and providing knowledge would imply

extra effort.

Before constructing the systems, modelling, structuring and generalising the

information that is generated during SMP is vitally important. In order to reach

this goal we decided to construct a common conceptualisation of the domain, where

objects, concepts, entities and their relationships were explicitly represented. For

this we used ontologies, which enable explicit specification of a conceptualisation

[18]. An ontology represents a certain view of an application domain in which the

concepts that live in this domain are defined in an unambiguous and explicit way

[8].

Moreover, as is explained in [33] ontologies facilitates enterprise knowledge man-

agement, “knowledge sharing” [37], and knowledge integration [11]. There are re-

quirements which are very important for KM-MANTIS, since its goal is to promote

the sharing and reusing of information and knowledge.

Different authors, such as [8], have stressed the convenience of using ontologies to

reuse knowledge in maintenance activities. [8] presents a concept-oriented approach,

focusing on the concepts to be reused, which depend on each organisation. Our goal

is to define an ontology in a higher level of abstraction, since the ontologies that

we present describe the SMP itself.

The only known work in this area has been carried out at [29]’s proposal, where

the main aspects to be taken into account in empirical studies of software mainte-

nance were described. However, in order to manage software maintenance projects,

besides identifying the factors that influence maintenance as in Kitchenham et al.’s

ontology it is also necessary to indicate a minimal set of dynamic aspects of the

domain, described in terms of states, transitions, events, processes, etc. Thus, we

decided to design a more extended and semi-formal ontology, (which, for reasons of

clarity, is organized into three ontologies and four subontologies) where both static

and dynamic aspects were clearly defined and specified. These last ones are mod-

eled by means of workflows [47]. Moreover, our ontology presents a focus different

from that of [29]’s, since our ontology pretends to be more practical and oriented

towards managing maintenance projects from a point of view of a business process.

This paper describes the different ontologies and subontologies that are part of

the global ontology to manage software maintenance projects. The methodology

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 325

used to define the ontology is also explained.

The contents of this paper are organised as follows: Section 2 describes what

features and parts, according to the literature and standards studied, would be

convenient to consider in order to design an ontology that represents the SMP.

Section 3 is where the methodology used to develop the ontology is explained. Later

in Sec. 4, the main section, the different ontologies and subontologies, which form

the global SMP ontology, are described in detail. Section 5 describe our experience

using this ontology in real projects. Finally, conclusions are presented in Sec. 6.

2. An Ontology for Software Maintenance

The process of software maintenance involves different kinds of information which

come from different sources (projects, staff, methodologies, etc.). Due to the com-

plexity of the SMP, a huge ontology is required, which integrates aspects related to

the four types of ontologies defined by [36] for information systems:

• Static ontologies encompass static aspects of an application, described in terms

of concepts such as entity, attribute, relationship, or resources.

• Dynamic ontologies, which describe dynamic aspects within an application, de-

scribed in terms of states, transitions, events, processes, etc.

• Intentional ontologies describe aspects related to the different agents (human or

otherwise).

• Social ontologies describe social settings in terms of social relationships among

agents.

Our ontology is made up of a set of ontologies (see Fig. 1), which represent the

different features defined by Mylopoulos. In order to represent the static aspects,

we defined the Maintenance Ontology, which consists of four subontologies.

They describe the concepts related to maintenance and consist of a subontology for

products, another for activities, a third for processes and the fourth for describing

the different agents involved in SMP. The number of static ontologies coincides with

those proposed by [29]. Nevertheless we have extended and changed them.

The dynamic part is represented by an ontology called Workflow Ontology,

where three relevant aspects of the maintenance process are defined:

• Decomposition of activities.

• Temporal constraint between activities. This being the order in which the activ-

ities must be performed.

• Control of the execution of activities and projects during the process enactment.

A third ontology called a Measurement ontology represents both static and

dynamic aspects related to the software measurement. An example of a dynamic

aspect is the actions to be measured. This ontology has been included because of

the importance of measurement within the software process.

The intentional and social aspects are considered within the same subontology,

Agents, since they are closely related.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

326 F. Ruiz et al.

7

actions to be measured. This ontology has been included because of the importance of

measurement within the software process.

The intentional and social aspects are considered within the same subontology, Agents,

since they are closely related.

Therefore, our ontology considers the four aspects that should be taken into account

when an information system is modelled. This is one of the contributions of this work.

Figure 1: Structure of the Software Maintenance Projects Ontology

However, considering the four aspects is not enough to ensure a formal ontology. An

ontology must be clear and precise, communicating the meaning of its terms in an

efficient way. Moreover, it should be coherent, allowing the making of consistent

inferences with the definitions. The methodology used to define the ontology helped us

to solve some of these issues, such as clarity since the methodology enabled us to use

different types of representation of the information and different layers to classify it.

Moreover, a method of integration was used to avoid redundancies or inconsistencies.

Although there are highly elaborate proposals defining very complete complex

processes for the integration of ontologies [30, 41], we have opted for a simpler solution

Components of the Software Maintenance Projects Ontology

Products Subontology

Process Subontology

Activities Subontology

Agents Subontology

Maintenance Ontology
Workflow
Ontology

Measure
Ontology

Fig. 1. Structure of the software maintenance projects ontology.

Therefore, our ontology considers the four aspects that should be taken into

account when an information system is modelled. This is one of the contributions

of this work.

However, considering the four aspects is not enough to ensure a formal ontology.

An ontology must be clear and precise, communicating the meaning of its terms in

an efficient way. Moreover, it should be coherent, allowing the making of consistent

inferences with the definitions. The methodology used to define the ontology helped

us to solve some of these issues, such as clarity since the methodology enabled us

to use different types of representation of the information and different layers to

classify it. Moreover, a method of integration was used to avoid redundancies or

inconsistencies. Although there are highly elaborate proposals defining very com-

plete complex processes for the integration of ontologies [30, 41], we have opted

for a simpler solution using the iterative method proposed in [35]. This way, the

ontology presented in this paper is the result of carrying out the three following

steps during two iterations:

1. To search for the items (concepts, attributes or interrelations) where overlapping

exists.

2. To relate concepts that are semantically linked by mean of equivalences or rela-

tionships of the same class (alignment).

3. To check the consistency, coherence and absence of redundancy of the results.

The different steps followed to construct the ontology are described in the following

section.

3. Ontology Engineering Method

Many authors have pointed out the importance of formalising the definition and

design of information systems with ontologies [20]. However, to design an ontology it

is advisable to follow a methodology suitable for this goal. Different methodologies

and representations have been proposed. For instance, [21] uses a representation

based on first-order predicate logic. Other authors prefer frame-based approaches,

such as those that are used in Ontolingua [12], one of the most frequently used

ontologic languages.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 327

We have chosen the REFSENO (Representation Formalism for Software Engi-

neering Ontologies) methodology, proposed by Tautz and Von Wangenheim [51].

The main reasons that motivated us to use this methodology were:

1. REFSENO was specifically designed for software engineering.

2. It allows the modelling of software engineering knowledge by using alternate

representations. The other approaches [12, 17, 21, 50, 52, 53] only allow types of

representation which are less intuitive of understanding for people who are not

familiar with first-order predicate logic or equivalent.

3. It has a clear terminology, differentiating between conceptual and context-

specific knowledge, thus enabling the management of knowledge from different

contexts. On the contrary, the above approaches do not distinguish the context-

specific knowledge. Furthermore, they represent a higher level of abstraction.

Therefore, they represent lesser level of granularity than REFSENO does.

4. It helps to build consistent ontologies thanks to the use of consistency criteria.

5. The other sets of techniques do not use constructs known from Case-Based Rea-

soning (CBR) as REFSENO does.

6. It follows the indications of [1] in the sense that the storage of experience in the

form of documents (in contrast to codified knowledge) results in an important

reduction of learning effort, typically associated with knowledge-based systems.

On the other hand, the epistemistic primitives of REFSENO draw their ideas from

several areas closely related to the areas that we use in the implementation of KM-

MANTIS. These are areas such as database mechanisms (e.g., relationships between

concepts and implied consistency rules), CBR mechanisms (e.g., similarity-based

retrieval) and knowledge-based mechanisms (e.g., inference rules). In addition, the

representation formalism is object-centred, since it uses a model similar to UML

(Unified Modelling Language). We have directly used UML to draw the ontologic

diagrams since it is a standard which is well known to the entire software engineering

community.

3.1. Brief REFSENO description

REFSENO provides constructs to describe concepts where each concept represents

a class of experience items. Besides concepts, its properties (called terminal at-

tributes) and relationships (nonterminal attributes) are represented.

One relevant feature of REFSENO is that it enables us to describe similarity

functions, which are used for similarity-based retrieval. In this way the methodology

facilitates the implementation of the retrieval component. On the other hand,

REFSENO also incorporates integrity rules such as: cardinalities and value

ranges for attributes, assertions, and preconditions that the instance must fulfil.

REFSENO extends the formalism of [39] by additional integrity rules, and by clearly

separating the schema definition and characterisation.

REFSENO is an improved adaptation of Methontology [13, 17] which imitates

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

328 F. Ruiz et al.

the software life-cycle proposed by the IEEE 1074 standard [22], where the main

stages are:

1. Planning.

2. Specification of the ontology requirements.

3. Conceptualisation (similar to the phase of design in a software system, so it is

the ontology itself).

4. Implementation (this means the representation and storing of the previous con-

ceptualisation by using computer science tools).

In REFSENO, the detailed information of the ontology is represented by means of

a collection of tables: concepts glossary, table of attributes, table of relationships

(non terminal attributes), of relationship classes, etc.

Terminal concept attributes are described by a 9-tuple formed from the following

items:

• Name: The name is used for reference purposes.

• Description: A narrative text which defines the meaning of the attribute.

• Cardinality: A range specifying the minimum and maximum number of values

the attribute may have.

• Type: Each terminal concept attribute is given a type, and the types are viewed as

an epistemistic primitive. REFSENO has some predefined types such as Boolean,

Integer, Real, Text, Identifier or Date. New types can be described by users.

• Default value: This is related to the insertion of new instances. If the user entering

a new instance does not specify a value for this attribute, the default value is

used.

• Mandatory: This is also related to new instances. It indicates whether an attribute

value of an instance has to be specified.

• Value inference: This component defines how to calculate the attribute value

automatically (if possible) based on the values of other attributes.

• Inferred attributes: This component lists all the attributes whose value is inferred

using a value of this attribute. There is a mutual dependence between value

inferences and inferred attributes, thus inferred attributes can automatically be

derived from the value inferences.

• Standard weight: This weight may be used by the similarity functions of the

concept this attribute belongs to. A weight of 0 denotes an attribute whose value

will not be used for querying.

REFSENO distinguishes three layers to which attributes may belong. These are

artifact, interface and context. The attributes of the artifact layer characterise the

instances themselves. Attributes of the interface layer characterise how a particular

instance can be integrated into the system. Attributes of the context layer charac-

terise the environment in which the instance has been applied and the quality of

the instance in the specified environment.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 329

In order to calculate the similarity functions between the two instances i and i′

the different layers should be taken into account, since there is a similarity function

for each layer. For a concept c these are simartif(c), simI/F(c) and simctxt(c) and

this is based on the local similarity functions of the concept’s attributes. The values

of similarity functions for a concept c between two instances i and i′ are combined

to a single similarity value as follows:

Sim(c)(i, i′) = Wartif∗simartif(c)(i, i
′)+WI/F∗simI/F(c)(i, i′)+Wctxt∗simctxt(c)(i, i

′),

where Wartif , WI/F, Wctxt are weights with which the similarity functions can

be adjusted to the needs of the users. The sum of the weights is always 1.

A similarity value equal to 0 means total dissimilarity between i and i′, and

a value equal to 1 indicates total similarity (equivalence). The concept’s sim-

ilarity functions are of a global nature because they are based on the local

similarity functions of the concept’s attributes. An example of how a similar-

ity function is calculated will be described in greater length when attributes

tables are shown. Besides similarity functions, attributes tables may also have

assertions which are conditions expressed as a formula, and that all instances

must fulfil.

The nonterminal attributes, those that represent how a particular entity is re-

lated to other entities, can be represented in the same concept attribute table used

for the terminal concept attributes. REFSENO allows other possible representa-

tions for nonterminal attributes, for example graphically, by using a tree structure.

However, in this paper only the first representation (tables) is used.

REFSENO has various kinds of predefined relationships, these being: is-a (de-

notes a specialisation of a concept, where the reverse name is has-specialisation),

instance-of (denotes a special is-a relation in which an instance is an ele-

ment of the extension of a concept, the reverse name being has-instances),

has-parts (denotes a decomposition, subparts may be shared among concepts

and the reverse name is part-of) and has-decomposition (denotes a decompo-

sition where the sub-parts exist only if the surrounding part exists, the re-

verse name being decomposition-of). Other relationships may be defined by the

users.

4. Specification and Conceptualization of the Ontology

In this section we describe the different stages undertaken in order to develop a

semi-formal ontology which represents the main concepts that the standards and

literature showed in Table 2 indicate that should be taken into account to model

the SMP. The planning and implementation stages are omitted, the former being

where the goals of the ontology and preliminary ideas for designed were proposed.

The aspects related to the latter will be described in future papers, since this paper

is focused on the design of the ontology.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

330 F. Ruiz et al.

4.1. Specification

In this initial phase the domain modelled, the purpose of the ontology, the scope,

and administrative information, such as the authors and knowledge sources are

indicated. Due to the SMP’s complexity, several ontologies and subontologies have

been developed. Thus, although the major concepts are normally listed in the scope

row, we preferred to list the different ontologies and subontologies designed (see

Table 1).

Table 1. Specification table.

Concept Value

Domain Management of Software Maintenance Projects

Author Alarcos Research Group (UCLM)

Purpose Ontology for enabling information interchange among engineers,
managers and users of maintenance projects.

Level of formality Semi-formal (REFSENO and UML)

Scope List of concepts:
This is classified (for reasons of clarity) into partial ontologies and
subontologies:
• Maintenance Ontology

◦ Products Subontology
◦ Activities Subontology
◦ Process Organization Subontology

� Procedures
� Requests Management
� Problems

◦ Agents Subontology
• Workflow Ontology
• Measurement ontology

Source of knowledge See Table 2

The sources of knowledge on which we have based ourselves to develop this

ontology have been the experience obtained from six R&D projects (see section

5) developed in collaboration with several national and international companies

throughout six years, plus the sources enumerated in Table 2.

4.2. Conceptualisation

After the requirements specification has been described, the ontologies themselves

must be developed. In order to do this we have followed the steps recommended by

[51]. The following sections describe the three ontologies (Maintenance, Workflow

and Measurement) and their subontologies designed to represent the SMP.

4.2.1. Maintenance ontology

The main sources of knowledge used to develop this ontology were D1, D2, D3,

D4 and D5 (see Table 2), stressing the informal ontology proposed by [29], which

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 331

Table 2. Sources of knowledge utilised to construct the ontology.

D1 Informal ontology for SMP proposed by Kitchenham et al. [29].

D2 Conceptual model for the corrective maintenance by Kajko-Mattsson [26, 27].

D3 Ontology for the software development process proposed by Falbo et al. [10].

D4 Conceptual model for software process and software measurement proposed by [5].

D5 Documents which define the MANTIS processes system:

D5a – Model of ISO 12207 life cycle

D5b – Process reference model ISO15504-2 [23].

D5c – ISO 14764 about SMP model [24].

D5d – Model of activities and tasks of the MANTEMA methodology [43].

D6 Several workflow representation models:

D6a – Reference model of Workflow Management Coalition [55].

D6b – Conceptual model of Sadiq and Orlowska [49].

D7 Models for the measurement process:

D7a ISO 15939 for the measurement process [25].

D7b Conceptual model to represent software data collections, proposed by [28].

helped us to divide this ontology into four subontologies, one per domain that

influences the SMP: products to be maintained, activities to be performed in

order to maintain the products, people who are involved during the SMP and

process organisation, which indicate how to carry out the activities. In these four

subontologies four types of elements are represented: artefacts, activities, resources

and agents, which are indispensable in the management of projects [44].

Products subontology

This subontology defines the software products that are maintained, their internal

structure, composition and the existing versions of each product. Figure 2 shows

the ontologic diagram, where the product is stressed since it is the most important

one.

16

4.2.1.1 Products Subontology

This subontology defines the software products that are maintained, their internal

structure, composition and the existing versions of each product. Figure 2 shows the

ontologic diagram, where the product is stressed since it is the most important one.

Version

Artifact

quality

type

age

deliverable

1..*

1..*

1..*

1..*

includes
0..*

0. . *

+formed o f

0..*

contains

+component

0. .*

Product

maturi ty

s ize

composit ion

quality

age

application type

1..*

1

1..*

1

generates
<<is-or igin-of>>

1. .*1 1. .*1 i s-com posed-of

Figure 2. Products subontology diagram

As Figure 2 shows, one software product can have different versions, which are formed

from a set of artifacts. For instance, for a product called “Accounts”, different versions

of this product may exist, and each version is made up of several artifacts. The concept

version has its own attributes, such as: number, date, etc. To simplify, they are not

represented in the diagram.

The previous diagram only shows a summarized view of the referred ontology. The

concept glossary contains the concepts previously represented in the diagram. Each row

of the table corresponds to one concept.

Fig. 2. Products subontology diagram.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

332 F. Ruiz et al.

Table 3. Products subontology: concept glossary.

Concept Super-concept Description Purpose

Artifact Element This is a software product, part of
which is created or modified by the
activities. It can be a document (text
or graphic), a COTS, or a code mod-
ule. Examples: requirement specifica-
tion documents, quality plan, class
module, routine, test inform, user
manual. Synonymous: software ele-
ment, work product, product item.

To define the internal
structure and software
composition.

Product Concept Software application, which is being
maintained. It is a conglomerate of
different artifacts. Synonymous: Soft-
ware.

Maintenance.

Version Concept This is a change in the base line of a
product. It could be an upgrade, release

or actualisation.

To implant the con-
figuration management
process.

NOTE: The super-concept “Concept” is the root.

As Fig. 2 shows, one software product can have different versions, which are

formed from a set of artifacts. For instance, for a product called “Accounts”, dif-

ferent versions of this product may exist, and each version is made up of several

artifacts. The concept version has its own attributes, such as: number, date, etc.

To simplify, they are not represented in the diagram.

The previous diagram only shows a summarized view of the referred ontology.

The concept glossary contains the concepts previously represented in the diagram.

Each row of the table corresponds to one concept.

In Tables 4 and 5 the terminal attributes of the artifact and product are repre-

sented respectively. As was explained in Sec. 3.1 attributes are typed and users can

define new types. Tables 4 and 5 shows some types defined by us, such as MeasureQ,

which defines a range of measures, or SwProductTaxo which makes up a taxonomy

of software products.

The items value inference, inferred attributes and default value are omitted since

on most occasions these columns do not have values. For this reason we consider

that the table shown is the clearest, since it has fewer columns, and it has no loss

of meaning.

Tables 4 and 5 describe the attributes of the concepts “Artifact” and “Product”

respectively. The attributes of the concept version have been omitted in order to

simplify the paper. Attributes preceded by (I/F) mean attributes of the interface

layer. They are characterised by indicating how a particular instance can be inte-

grated into the system. In the case of the “Artifact”, the “source” attribute explains

from which product the artifact is a subpart. The column labelled “Type” in this

case, specifies the relationship between both concepts. Second and third interface

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 333

Table 4. Products subontology: attributes table for the concept “Artifact”.

Concept: Artifact
Cardi- Standard

Name Description nalinality Type Mandatory weight

Quality Qualitative measure
of the quality, espe-
cially of the artifact
documentation.

1 MeasureQ Yes 1

Type Artifact Nature. Ex-
amples: documents,
module, component,
file.

1..* SwProductTaxo Yes 1

Age Number of years from
when the first version
was obtained.

1 Integer Yes 1

Deliverable This indicates whether
the artifact must be
delivered to the client
or not.

1 Boolean Yes 1

(I/F) source This indicates the pro-
duct of which it is a
part.

1 Decomposition-
of [product]

Yes 1

(I/F) artifacSon This indicates into
which artifacts it is
divided.

0..* Has-parts
[artifact]

No 1

(I/F)artifacFather This indicates of which
artifact it is a part.

0..1 Part-of
[artifact]

No 1

attributes show whether the artifact has sub-parts and whether it is the sub-part

of another artifact.

The rest of the attributes belong to the artifact layer that characterises the

instance itself. Examples of these attributes are quality, type, age or deliverability,

in the case belonging to the concept called “Artifact”.

For the case of the “Product”, there is only one interface layer attribute which

indicates in which artifacts the product may be decomposed. Obviously, if the arti-

fact has a relationship Decomposition of with the concept “product”, this concept

must have the opposite relationship Has-decomposition.

Taking advantage of the information shown in Table 5 we are going to illustrate

how the similarity function for the concept “Product” would be calculated. First

of all, the similarity functions for each layer, artefact and I/F (the context layer

is omitted because in this case there are not attributes of this layer) should be

calculated. To calculate each local similarity function it is necessary to know the

similarity function associated with each type of the attributes of each layer. Thus,

in the case of the artifact layer of the concept product, it is necessary to know the

similarity function of the types “TypeMaturity”, “MeasureSize”, “TypeComposi-

tion”, “TypeApplication”, “MeasureQ” and “Integer”. REFSENO provides several

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

334 F. Ruiz et al.

Table 5. Products subontology: attributes table for the concept “Product”.

Concept: Product
Cardi- Standard

Name Description nalinality Type Mandatory weight

Maturity Phase of the product
in the life-cycle.

1 TypeMaturity Yes 1

Size Qualitative measure of
the size.

1 MeasureSize Yes 1

Composition Abstract level of the
artifacts that form it.

1 TypeComposition Yes 1

Application type Type of application.
For instance: manage-
ment, scientist, etc.

1 TypeAplicaction Yes 1

Quality Qualitative measure-
ment of the quality,
basically of the docu-
mentation.

1 MeasureQ Yes 1

Age Number of years from
when the first version
was obtained.

1 Integer Yes 1

(I/F)Component Artifact into which
the product is divided.

0..* Has-
decomposition

[artifact]

No 1

predefined types and their similarity functions. For instance, the “Boolean” type

which has two values, true and false, has the following similarity function for com-

paring two instances i and q:

Sim(i, q) = 1 when i = q

0 otherwise.

In the case of using own types, such as in “TypeMaturity” or “MeasureQ”, their

similarity types should also be described. Then, the local similarity functions are

calculated by computing the sum of the similarity function of each type of attribute

belonging to this layer. Finally, each local similarity function is normalized resulting

in a value in the range [0,1].

In order to know the global similarity function, different values should be as-

signed to Wartif , and WI/F , depending on what the needs of user are. For instance,

if a user wants to compare the similarity between two products according to their

own features, the value of Wartif should be maximised. For more information about

the similarity functions see [51].

These functions are very useful in the design of CBR techniques, which KM-

MANTIS uses. Concretely, KM-MANTIS uses similarity functions to compare soft-

ware products and maintenance requests in order to detect similarities between new

demands and previous ones, with the goal of reusing information and proven solu-

tions, thus decreasing costs and effort. CBR techniques have also been successfully

used in software reuse in [6, 14] and in other topics related to reuse in [34].

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 335

21

Figure 3 shows that the activities are classified into “Main” and “Support” activities,

and they are also divided into different types. In the diagram the most important ones

have been highlighted. For example “Managerial” is a “Main” activity (sub)type, which

may be a “Process Management” activity type.

The maintenance activities are classified, according to the ISO 14764 [24], into

“Investigation”, “Modification”, and “Retirement” activities. The modification activities

consist basically of two types: “Correction” and “Improvement”. The first one belongs

to corrective maintenance, where mistakes are eliminated. The second one is in charge

of preventing problems (preventive maintenance), implementing changes in the

requirements (perfective maintenance) or changing aspects of implementation (adaptive

maintenance) [48]. For instance, to change the operative system used by the application,

but without changing the application requirements.

S of tware

H a r d w a r e

Correct ion

Changing Implem entat ionChang ing Requ i rements

I m p r o v e m e n t

M a n a g e r i a l

Co n f i g u r a t i o n M a n a g e m e n t

formality
quallity

M a i n t e n a n c e

Ret i rement

El iminat ing Problems Prevent ing Prob lems

Qual i ty Assurance

Process Management

Investigat ion

history M o d if ication

modification size
criticity

ResourceActivity

abstraction level 1..* 0..*1..* 0..*u s e s
<<is-used-by>>

Artifact

0..* 1..*0..* 1..*

i s_ou tpu t_ f rom

<<is_created_by>>

1..*0..* 1..*0..*
i s _ i n p u t _ t o

SupportM a i n

Figure 3. Activity subontology diagram
Fig. 3. Activity subontology diagram.

Activity subontology

This subontology includes two of the four critical elements for managing a main-

tenance project: activities and resources. The activity subontology defines: a tax-

onomy for the types of activities, a taxonomy for the types of resources and also

defines the relationship between artifacts, activities and resources.

Figure 3 shows that the activities are classified into “Main” and “Support” ac-

tivities, and they are also divided into different types. In the diagram the most

important ones have been highlighted. For example “Managerial” is a “Main” ac-

tivity (sub)type, which may be a “Process Management” activity type.

The maintenance activities are classified, according to the ISO 14764 [24], into

“Investigation”, “Modification”, and “Retirement” activities. The modification ac-

tivities consist basically of two types: “Correction” and “Improvement”. The first

one belongs to corrective maintenance, where mistakes are eliminated. The second

one is in charge of preventing problems (preventive maintenance), implementing

changes in the requirements (perfective maintenance) or changing aspects of im-

plementation (adaptive maintenance) [48]. For instance, to change the operative

system used by the application, but without changing the application requirements.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

336 F. Ruiz et al.

The dependencies of execution between the activities are not included in this

ontology, since we considered that this aspect was more related to the workflows,

therefore they are defined in the workflow ontology.

The concept glossary for the subontology activity and the attributes table for

the concept “Activity”, are shown in the following tables:

Table 6. Activities subontology: concepts glossary.

Concept Super-concept Description Propose

Activity Element Action which is carried out in order
to achieve the project’s goals. Syn-
onyms: Task, step

Describing the work
to be performed

Artifact – See products subontology –

Quality
Assurance

Support Support activities performed to make
sure that the processes and products
follow the requirements and estab-
lished plans.

Guaranteeing the
quality of the prod-
uct

Changing
Implementation

Improvement Improvement activity carried out to
adapt a software product to changes
in its implementation environment
without affecting the requirements.

Giving maintenance
service

Changing
Requirements

Improvement Improvement activity carried out to
adapt software working to changes
in the requirements, or to the inclu-
sion of new requirements. Perfective
maintenance.

Giving maintenance
service

Correction Modification Modification activity which consists
of eliminating the defects in a soft-
ware product so that it will work as
requirements indicate.

Giving maintenance
service

Eliminating
Problems

Correction Correction activity carried out to
eliminate detected problems. Syn-
onym: Corrective maintenance.

Giving maintenance
service

Maintenance Main Activity to manage the SMP. This
activity is included in the organi-
sational subsystem, defined in the
MANTIS process system.

Managing the SMP

Configuration
Management

Support Support activity whose objective is
to establish and maintain the in-
tegrity of said artifacts, and make
them available via different versions
to the projects agents.

Guaranteeing the
quality of the ver-
sions

Process
Management

Managerial Activity to organise and monitor
the initialisation and carrying out of
SMP.

Managing the SMP

Hardware Resources Resource formed from a computer
science system, a computer and a pe-
ripheral artifact.

Utilising the com-
puter science artifact

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 337

Table 6. (Continued)

Concept Super-concept Description Propose

Investigation Maintenance Activity which checks the different
ways of carrying out a maintenance
requirement, and its impact on the
software product.

Giving maintenance
service

Managerial Main Activity included in the SMP accord-
ing to the ISO/IEC [24].

Performing the SMP

Improvement Modification Activity which implements changes
in a software product. The changes
modify the product’s behaviour or
improve the quality features.

Giving maintenance
service

Modification Maintenance Activity which creates or modifies
one or several artifacts, changing the
behaviour or implementation of the
product.

Giving maintenance
service

Preventing
Problems

Improvement Activity which eliminates problems
even though they have not been con-
sidered defects. Synonym: Preventive
maintenance.

Giving maintenance
service

Main Activity Activity belonging to the main sub-
system, or to the organisational sub-
sytem defined in the process system
of MANTIS.

Performing and man-
aging the SMP

Resource Element Something that is necessary for per-
forming an activity, but is not part of
the software product.

Managing resources

Retirement Maintenance Activity which is performed to termi-
nate the life of a software product.

Terminating a main-
tenance service

Software Resource Software tool used by the total
or partial automatisation of some
activities.

Using the software
tool

Support Activity Activity whose goal is to facilitate the
carrying out of the main activities.

Giving support to
the main activities

Table 7 represents the fact that one activity can be composed of several sub-

activities, or on the contrary, that one activity is part of another more complex

activity. They are attributes belonging to the interface layer.

Process organization subontology

This subontology includes the concepts which define how to carry out the different

activities. It also indicates how the maintenance process itself is organised.

One of the main differences between the phase of software development and the

phase of maintenance is that the former is directed by requirements and the latter

is directed by events. This means that the inputs triggered by the maintenance

activities are non-plannable random events. These are the maintenance requests

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

338 F. Ruiz et al.

Table 7. Activities subontology: attributes table for the “Activity” concept.

Concept: Activity

Cardi- Standard

Name Description nalinality Type Mandatory weight

Abstraction level This indicates the de-
gree of abstraction of
an activity within the
processes system taxon-
omy.

1 TaxonoPro Yes 1

(I/F)Subactivity Activities that must be
performed to carry out
the activity.

0..* Has-parts
[activity]

No 0

(I/F)ActivityFather Activity which depends
on the activity.

0..* Part-of
[activity]

No 0

(MR). A critical aspect for a maintenance organization is to appropriately manage

the queue of requests that it receives.

In this subontology it is possible to distinguish three parts focused on the fol-

lowing issues:

— Identification of problems and their types

— Procedures to carry out activities

— Maintenance and management activities which make it possible to manage MR

Identification of problems and their types

Investigation activities produce reports related to the MR. These reports, called

investigation reports contain information about the different problems found in the

software. An investigation report is an artifact of document type, which identifies

the reasons why a problem arises (the problem has previously been communicated

by an MR), and the effects that it produces in the software. An investigation report

can be related to a problem which has already been analysed in previous reports,

and in this case the investigation report complements the previous one.

The reasons for a problem arising could be within the software itself, or be

produced by other causes. The most common reasons related to the software found

are failures, or incorrect operations that have taken place during the execution [26].

Procedures to carry out the activities

One activity can be carried out by using one or more procedures. That does not

mean that all the procedures are always used, because it is possible that some

procedures have the same means of functioning. In this case one must be chosen.

For each procedure, its type (method, technique, script) and its constraints must

be defined according to the paradigm and technology used [10]. The software tools

useful to automate each procedure and the artifacts modified or created by the

procedure should also be reflected in the ontology.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 339

Maintenance requests management

Figure 4 shows part of the subontology which represents the main activities and

artifacts in the software maintenance process. The process management consists of

a collection of activities which are in charge of managing the MR, and another set

of activities dedicated to the control of changes. These activities use basically two

types of artefacts: MR, which trigger the activity, and the investigation reports.

There are two types of MR depending on their contents. They can indicate the

M a in te n a nceM a na ge ria l

S upportM a in

0..*0..* 0 ..*0 ..*

i n vo ke s

<<u se s>>

Sc riptTecniqueM ethod

Pa radigm

De ve lo pme nt Tec nology

<<i nc lussion> >

No-softw a re Fa ult

Fa ilu re

Cha nge Re que st

P roble m Re port

Configura tion M a na ge m e nt

V e rsion

1 ..*

1

1 ..*

1

d e li ve rs

<<m a kes-ava i l a b le >>

P roduct

1..*

1

1..*

1

h a s-g e n e ra te d

<< is-orig in -of> >

Ac tiv ity

De ve lopm ent Factor

Softw are

M a in ta ne r

1 ..*

0 ..1

1 ..*

0 ..1

sup po rts

<<g ive s-se rvi ce >>

Proce dure

autom ation grade

1..*

1..*

1 ..*

1 ..*

u se s

<<u se s>>

1..*

1 ..*

1 ..*

1 ..*

ma y-u se

<<m a y-u se >>

0..*0..* 0 ..*0 ..* i s-co n strain ed- by

<< is-re stri ng e d -b y>>

1..*

1..*

1 ..*

1 ..*
a u toma te s

<< is-u se d -by>>

S e rvice Le ve l Agre e m e nt

s ervice conditions

M odifica tionP roc ess M an a ge m e nt

1

1..*

1

1..*

d e fin es-structu re-o f

<<d ete rm in e s-ch a ra cte ri sti cs-o f>>

A rtifa ct

0..*

1..*

0 ..*

1 ..*

mo d i fi e s

<<m o d i fi e s>>

Age nt

M R M a na ge m e nt

1

0..*

1

0..*

can -su ffe r

<< is-re st ri ng e d -b y> >

1..*

1

1..*

1

i n clu d e s

Inve stiga tion

Control Cha nge

0..*

1

0..*

1
a p p ro ve s

<< is-o rig in -o f>>

1..*

1

1..*

1

in clud e s

Ca use

1..*

0..*

1 ..*

0 ..*
p la ce d -in

<< is-i n >>

M a in te na nce Re que st

0 ..*

1 ..*

0 ..*

1 ..*

commu nica te s
< <cre ate s> >

1..*

1

1..*

1

reci ve s

<<u se s>>

Inve st iga tion Re port

0 ..1

1

0 ..1

1

p ro du ce s

<< is-o rig in -o f>>

1..*1..*

+orig ina l

1 ..*

comple men ts

<<e xte n d s>>

+pos terior

1..*

1 ..*
1

1..*
1

re ci ve s

< <u se s> >

1..*

1..*

1 ..*

1 ..*

p ro du ced -by

< <i t s-o rig in-i s> >

1

0..*

1

0..*

i s-b a se d-o n

<<i ts-o rig in -i s>>

 Fig. 4. Process organization subontology.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

340 F. Ruiz et al.

description of a problem detected in the software (problem report), or a request for

a change (change request).

When the MR management receives an MR, analyses which the organisation

agreed with the client, according to the “Service Level Agreement”. In the case that

the MR is within the services established, an “Investigation Report” is generated

from an “Investigation” activity. This report is received by the “Control Change”

activity, which is in charge of deciding which modification activities are accepted

(in the case of there being any).

One aspect to take into account is the support activities. These are invoked

by the process management or by the maintenance activities. Within the support

activities is the configuration management, which has strong repercussions on the

quality and performance of the maintenance service because it is in charge of deliv-

ering the new versions of the product to users. Figure 4 shows the process organi-

sation subontology, where the three aspects explained (problems, procedures, and

MR management), are integrated.

This, and the following subontologies, have concept tables similar to those pre-

sented for the previous subontology. However, with the end result of not making

this paper too long, in this subontology and in the following ones, only the UML

diagrams are shown.

Agents subontology

Different agents are involved in the SMP. We have classified them in the following

way:

(a) Automatic agents (software tools) and human agents.

(b) Human agents can be people (individual) agents or organisations. The latter

consists of people. Each person plays a determinate role in each organisation

[5].

(c) Each organisation has an organisational model, which is represented by a hier-

archy of aggregations formed of the subordinate organisations.

(d) In accordance with the MANTEMA methodology, there are three organisations:

maintainer, client and user [42]. Sometimes the client and the user are the same,

but the most frequent aspect is that they are not.

In Fig. 5 we can see that the model of agents is based on the concept of role.

This allows generalisation and flexibility to represent any possible situation which

takes place in a real project [43]. Therefore, during the process definition, the roles

and their responsibilities are established. On the other hand, it is during the project

planning stage, where the agents are involved, and their roles are indicated.

4.2.2. Workflow ontology

Recently, some authors [38] have suggested using workflow for dealing with soft-

ware processes, thus taking advantage of the existing similarity between the two

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 341

28

Maintaner Client

Product

1..*

0..1

1..*

0..1

suppor t s

<<gives-service>>

1..*

1

1..*

1
is-o wn e r-o f

<<is-owner-of>>

User

1..*

0..*

1..*

0..*

u t i l i z e s
<<uses>>

P erso n

abi l i t ies

attitude

Organization

1..* 1..*1..* 1..*

emp loys 1..*

0..*

+ma in1..*

a d d i n g

+subordinated
0..*

Job

0..1 0..*

+super ior

0..1

repo r t s -t o
<<obeys-to>>

+subordinated

0..*

Softw a re

Resource

Huma n

0..*

0..1

0..*

0..1

h a s

<<is-owner-of>>

Agent Activity0..*0..* 0..*0..* performs
<<performs>>

Role
ski l l s

capabi l i t ies

0..*

1..*

0..*

1..* pla ys
<<gives-service>> 1..*

1

1..*

1
i s - respons ib le - fo r

<<is-characterized-by>>

Figure 5. Agents Subontology Diagram

4.2.2 Workflow Ontology

Recently, some authors [38] have suggested using workflow for dealing with software

processes, thus taking advantage of the existing similarity between the two

technologies. The value of Workflow Management Systems (WfMS) in the automation

of business processes has been clearly demonstrated, and given that SMP can be

considered as part of a wider business process, it is reasonable to consider that

workflow technology will be able to contribute a broader perspective to SMP.

Fig. 5. Agents subontology diagram.

technologies. The value of Workflow Management Systems (WfMS) in the automa-

tion of business processes has been clearly demonstrated, and given that SMP can

be considered as part of a wider business process, it is reasonable to consider that

workflow technology will be able to contribute a broader perspective to SMP.

These reasons have led us to integrate workflow concepts in the ontology. We

have incorporated aspects of the “Workflow Reference Model”, of the Workflow

Management Coalition [56], and aspects of other proposals [31].

The Workflow ontology incorporates aspects corresponding to the following

three issues [47]:

(a) Decomposition of a complex activity into more simple activities.

(b) Constraints between activities, in other words, the order in which activities are

performed.

(c) Controlling the state of the activities and projects during the processes

enactment.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

342 F. Ruiz et al.

31

Activity

state

i t e ra t i on cond i t i on

i te ra t ion

Simple

Transition Condition

Complex

Control Flo w

p re c e d e n ce typ e

1

1 ..*

1

1 ..*

c onta i n s

Node

1

1 ..*

1

1 ..*

conta ins

0 ..*
1

0 ..*
1

beg ins in
<<references- to>>

0 ..*

1

0 ..*

1

ends- in
<<refe rences-to>>

Recursive Definit ion

of the activity
stru c tu re

Ele m en t

Project

s ta te

1. .*

1. .*

1. .*

1. .*

i nc ludes

Branch Merge

Figure 6: Workflows Ontology Diagram

4.2.3 Measurement ontology

A fundamental aspect to manage and control in any project, is the availability of a set of

metrics which will allow the measurement of the product that is being produced or

maintained, and also how the project is being executed. Both aspects are fundamental

for the quality assurance and the assessment or improvement of the process. For these

reasons, and for software engineering to be considered as such, it is essential to be able

to measure what is being done. For this purpose, the Measurement ontology includes the

concepts of measurement, metrics, values and attributes associated with the activities,

Fig. 6. Workflows ontology diagram.

The first aspect has been modelled on the activity ontology. However, in this

ontology we have added the concept of “Workflow”. Thus, according to the workflow

model presented by [49] two types of activities exist: “Simple” (those that do not

have an internal structure related to the project management), and “Complex”

(they imply the execution of a workflow). A complex activity contains a set of

interrelated “Nodes” and “Control flows”. Nodes could be activities (sub-activities

belonging to a complex activity) or “Transition conditions”. Therefore, a recursive

definition of the structure of an activity is used. For example, a main activity has

an internal structure modelled by a workflow, that has sub-activities, which might

also be complex and be modelled by another workflow, and so on until we obtain

simple sub-activities. Transition conditions could be “Branch” or “Merge”.

On the other hand, a control flow represents a precedence relationship between

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 343

two nodes, identified by the associations called “begin-in” and “finish-in”. A con-

trol flow may be of different types depending on the kind or precedence that it

represents: “finishing to start”, “start to finish”, “start to start”, etc.a

The iterative structures (loops that repeat the execution of an activity more than

once) are represented by the activities attributes, called “iteration” and “condition

iteration”. Activities with iteration mean that there is the possibility that several

different enactments of the same activity exist during the enactment of an instance

of a project.

The state of execution of a project and its corresponding activities are repre-

sented in the ontology by an attribute called “state”. The different possible states

are: Not started, in execution, suspended, finished, and aborted [55]. Figure 6 shows

all the considerations explained.

4.2.3. Measurement ontology

A fundamental aspect to manage and control in any project, is the availability of

a set of metrics which will allow the measurement of the product that is being

produced or maintained, and also how the project is being executed. Both aspects

are fundamental for the quality assurance and the assessment or improvement of

the process. For these reasons, and for software engineering to be considered as

such, it is essential to be able to measure what is being done. For this purpose, the

Measurement ontology includes the concepts of measurement, metrics, values and

attributes associated with the activities, artifacts and resources. This is bearing in

mind that the measurements can refer to both product and process aspects. This

measurement ontology is based on the process measurement standard ISO 15939

[25]. This standard claims that it is necessary to define metrics (named measure-

ment, noun) for the process. These metrics will help to satisfy the organization

information necessities.

According to the standard, all that can be measured are “entities”. An entity

is an object such as a process, a product, a project or a resource, which may

be characterised through its attributes. All attributes are associated to a metric

which is linked to a measurement unity (for instance, number of code lines), and

a measurement unity in turn belongs to a determinate scale. According to the

standard, four scales may be differentiated: nominal, ordinal, interval and ratio,

although it is possible to establish other classifications such as Kitchenham’s et al.

[28].

The measurement ontology (see Fig. 7) shows three types of metrics:

• Base metric. This is defined from an attribute and the necessary method to

quantify it.

aThese are the types of precedence relationships defined by PMI [38] and used in the majority of
the systems for project management. However, it is possible to define other types by using other
different constraints.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

344 F. Ruiz et al.

33

project's elements: artifacts,

activities, resources and
agents (maintenance
ontology)

Artifact

Management

Method

Derived Metric

Measurement Function

1

1..*

1

1..*
is-calc ulated-with

<<uses>>

Base Metric

2..*

1..*

2..*

1..*

is-based-on
<<uses>>

Measurement Method
type

1

1..*

1

1..*

is-defined-by
<<is-characterized-by>>

Scale
type

1

1..*

1

1..*

is-applied-with
<<restricted-by>>

Unit

1..*

1..*

1..*

1..*

belongs-to
<<references-to>>

Element

Defined Metric

Decision Criteria

Metric
default value

11..* 11..*
expressed-in

<<references-to>>

Measurable Attribute
1..*

1

1..*

1includes

1..*

1..*

1..*

1..*

can-be-measured-w ith
<<is-related-to>>

Analysis Model

1..*

1..*

1..*

1..*

combines
<<uses>>

1..*

1..*

1..*

1..*uses
<<restricted-by>>

Project

1..*

1..*

1..*

1..*

includes

Measurable Concept

1..*

1..*

1..*

1..*
is-associated-with
<<references-to>>

Observation
value
t ime point
accuracy
type

1

0. . *

1

0. . *is-referred-to
<<references-to>>

0..*

1

0..*

1
is_qualified-with

<<references-to>>

Indicator
accuracy level
type

1

1..*

1

1..*
is-obtained-with

<<uses>>

Measurement

Information Need

1..* 11..* 1

has
<<is-origin-of>>

1..*

1

1..*

1

receives
<<uses>>

1

1..*

1

1..*
corresponds-to

<<is-characterized-by>>

Interpretation

1

0..*

1

0..*
interprets

<<references-to>>

1

0..*

1

0..*

becomes-useful-to
<<references-to>>

Informative Product

1..*

1

1..*

1 produces
<<is-origin-of>>

1

1

1

1

satisfies
<<its-origin-is>>

1..*

1

1..*

1

is-composed-of

Figure 7: Measurement ontology diagram

5. Using the Ontology

The nature of an ontology implies that it cannot be validated with empiric methods. For

this reason, for the development of the ontology presented in this paper, we have used

Action-Research [9], a qualitative research method that has been very useful to us

thanks to its main characteristics. The method focuses on a problem, requires a iterative

process, and mandatory collaboration between researchers and stakeholders. Thus, the

presented ontology is largely the result of the acquired experience of the collaboration

with several organizations with interest in the software maintenance service field. The

Fig. 7. Measurement ontology diagram.

• Derived metric. This is defined from two or more base measure values.

• Indicator. The measure that gives an estimation of the attributes derives from

a model. Indicators are the basis for analyses and decision-making.

The measurement process is directed by information necessities [15]. For each

information necessity the process creates one informative product that fulfills that

necessity. Informative products are the base for making decisions in organisations.

For more information about the measurement ontology see [16].

5. Using the Ontology

The nature of an ontology implies that it cannot be validated with empiric methods.

For this reason, for the development of the ontology presented in this paper, we

have used Action-Research [9], a qualitative research method that has been very

useful to us thanks to its main characteristics. The method focuses on a problem,

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 345

requires an iterative process, and mandatory collaboration between researchers and

stakeholders. Thus, the presented ontology is largely the result of the acquired

experience of the collaboration with several organizations who showed interest in

the software maintenance service field. The strongest collaboration has been with

Atos ODS Origin, a European leading company in the outsourcing of software

services with a billing of over 6000 million Euros.

This collaboration has been developed within the framework of several R&D

projects whose main objectives have been to:

— define a specific methodology for maintenance (MANTEMA, 1997–2000);

— establish new methods to improve the SMP (MPM, 1998–2000);

— define metrics of maintainability (MANTICA, 1999–2001);

— design and develop an “extended software engineering environment” to manage

maintenance projects (MANTIS, 2000–2001);

— improve the SMP by mean of software measurement and knowledge management

(TAMANSI, 2002–2004);

— develop new test techniques for the agile maintenance of software (MAS, 2003–

2005).

Thus, from an initial idea focused only on the aspects of carrying out mainte-

nance tasks (MANTEMA project), we enlarged and revised the ontology, continu-

ally collaborating with stakeholders, until the current general proposal was defined.

The global version of the ontology that we have summarized in this paper has

been and is being used in a successful way in several research works that we shall

mention briefly:

(a) During the development of the MANTIS project the necessity of having a soft-

ware maintenance ontology was detected since important problems of concep-

tual and terminological character arose. These problems hindered the correct

collaboration with stakeholders and the interaction with other researchers. The

main lesson learnt was: if you want to manage software maintenance projects

from a wide business process point of view (integrating software engineering

aspects with other managerial ones), you need an ontology to facilitate sharing

knowledge among all those who participate in the SMP [45]. More concretely,

the existence of this ontology was of great help in implementing the MANTIS

environment. It served as a “filter of knowledge” when creating the models and

metamodels of processes and application domains [19]. It has also been very

useful when establishing the functional requirements of the MANTIS global

repository [46].

(b) At present, the ontology is being used in the TAMANSI project for the con-

struction of KM-MANTIS, a knowledge management system to improve main-

tenance project management [54]. With KM-MANTIS, we intend to transform

the MANTIS environment into an integrated framework and into a collection

of software tools useful to attain levels 4 (managed) or 5 (optimized) of CMM.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

346 F. Ruiz et al.

In this sense, the availability of the ontology has made it simpler to define the

functional requirements of KM-MANTIS. It is also of great help in the design

and implementation of this new software component.

(c) The above measurement ontology is also being used to develop a software pro-

cesses measurement framework and of a tool called Gen-METRIC [15]. Taking

advantage of the generality of the ontology, we seek to define, and to be able to

measure, by using the tool, abstract metrics or meta-metrics that define fam-

ilies of metrics of the same nature. For example, the “number of tables in a

relational schema” or the “number of modules in one product software”. In a

similar way as in the MANTIS project, the ontology has been the key during

the creation of the metamodels and models of processes, software products and

metrics.

6. Conclusions

This paper presents a summary of a semi-formal ontology for managing software

maintenance projects. In this ontology, the main aspects, according to the software

process standards, have been considered: products, activities, processes, agents,

measures, and some dynamic aspects (workflows). This ontology is different from

previous ones which have focused on static features and have been highly centred

on a particular problem.

Another important issue is the practical character of this ontology, since it has

already been used in several projects. This fact helped us to detect some of its

limitations and to improve them. For instance, Workflows were added when we

discovered that it was very important to complete the ontology. Moreover, the

last version of the ontology is currently being used in the development of a new

KM module, in order to manage and reuse information and knowledge generated

during maintenance projects management (see [54]). Having a clear and precise

ontology was critical to the construction of an intelligent system, since a common

conceptualisation facilitates the sharing and reuse of information.

To develop the ontology, a suitable methodology has been used, first defining the

concepts involved, second the attributes of each concept and third the relationship

between the different concepts. An additional step to control overlaps was carried

out. The ontology has been represented by using REFSENO, formalism for software

engineering ontologies.

Acknowledgements

The authors would like to thank the anonym reviewers for their useful recommen-

dations to improve this paper.

This work is partially supported by the TAMANSI project (grant number PBC-

02-001, Consejeŕıa de Ciencia y Tecnoloǵıa, Junta de Comunidades de Castilla-La

Mancha) and the MAS project (grant number TIC2003-02737-C02-02, Ministerio

de Ciencia y Tecnoloǵıa, SPAIN).

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 347

References

1. K.-D. Althoff, A. Birk, S. Hartkopf, and W. Müller, Managing software engineering
experience for comprehensive reuse, in Proc. 11th Int. Conf. on Software Engineering,
Kaiserslautern, Germany, 1999.

2. K.-D. Althoff, A. Birk, and C. Tautz, The experience factory approach: Realizing
learning from experience in software development organizations, in Proc. 10th German

Workshop on Machine Learning (FGML’97), University of Karlsruhe, 1997, pp. 6–8.
3. V. R. Basili, G. Caldiera, and H. D. Rombach, The experience factory, in Encyclopedia

of Software Engineering, ed. J. J. Marciniak, (John Wiley & Sons, 1994), pp. 469–476.
4. V. R. Basili and H. D. Rombach, The TAME project: Towards improvement-oriented

software environments, IEEE Trans. on Software Engineering SE-14(6) (1988) 758–
773.

5. U. Becker-Kornstaedt and R. Webby, A Comprehensive Schema Integrating Software
Process Modelling and Software Measurement, Fraunhofer IESE-Report No. 047.99
(Ed.: Fraunhofer IESE, 1999), http://www.iese.fhg.de/Publications/Iese reports/.

6. R. Bergmann and U. Eisenecker, Case-based reasoning for supporting reuse of object-
oriented software: A case study, in Proc. Expert Systems 95 (1996) 152–169.

7. D. N. Card and R. L. Glass, Measuring Software Design Quality (Prentice Hall, En-
glewood Cliffs, NJ, 1990).

8. D. Deridder, A concept-oriented approach to support software maintenance and
reuse activities, in Proc. Workshop on Knowledge-Based Object-Oriented Software

Engineering at 16th European Conference on Object-Oriented Programming (ECOOP

2002), Málaga, Spain, 2002.
9. C. Estay and J. Pastor, Improving action research in information systems with project

management, in Proc. Americas Conference on Information Systems, Long Beach,
CA, USA, 2000, pp. 1558–1561.

10. R. A. Falbo, C. S. Menezes, and A. R. Rocha, Using ontologies to improve knowl-
edge integration in software engineering environments, in Proc. 4th Conference on

Information Systems Analysis and Synthesis, Orlando, Florida, USA, 1998.
11. R. A. Falbo, C. S. Menezes, and A. R. Rocha, Using knowledge serves to promote

knowledge integration in software engineering environments, in Proc. 11th Int. Conf.

on Software Engineering and Knowledge Engineering (SEKE’99), Kaiserslautern,
Germany, 1999.

12. A. Farquhar, R. Fikes, and J. Rice, The Ontolingua server: A tool for collaborative
ontology construction, Int. J. Human-Computer Studies 46 (1997) 707–728.

13. C. Fernández, A. Gómez-Pérez, and N. Juristo, METHONTOLOGY: From ontologi-
cal art towards ontological engineering, in Proc. AAAI Spring Symposium, University
of Stanford, Palo Alto, California, USA, 1997, pp. 33–40.

14. M. Fernández-Chamizo, P. A. González-Cálero, M. Gómez-Albarrán, and L.
Hernández-Yánez, Supporting Object Reuse through Case-based Reasoning (Springer-
Verlag, 1996), pp. 135–149.

15. F. Garćıa, F. Ruiz, J. A. Cruz, and M. Piattini, Integrated measurement for the eval-
uation and improvement of software processes, in Proc. 9th Int. Workshop Software

Process Technology, (EWSPT’2003), Helsinki, Finland, 2003, pp. 94–111.
16. M. Genero, F. Ruiz, M. Piattini, and C. Calero, Towards and ontology for software

measurement, in Proc. Int. Conf. on Software Engineering and Knowledge Engineer-

ing (SEKE’2003), San Francisco, USA, 2003.
17. A. Gómez-Pérez, Knowledge Sharing and Reuse (CRC Press, 1998).
18. T. Gruber, Towards principles for the design of ontologies used for knowledge sharing,

Int. J. Human-Computer Studies 43(5/6) (1995) 907–928.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

348 F. Ruiz et al.

19. M. Gruninger and J. Lee, Ontology applications and design, Commun. ACM 42(2)
(2002) 39–41.

20. N. Guarino, Formal ontology and information systems, in Proc. 1st Int. Conf. on

Formal Ontologies in Information Systems, FOIS’98, Trento, Italy, 1998.
21. T. Hikita and M. J. Matsumoto, Business process modelling based on the ontol-

ogy and first-order logic, in Proc. 3rd Int. Conf. on Enterprise Information Systems

(ICEIS’2001), Setubal, Portugal, 2001, pp. 717–723.
22. IEEE (1995), STD 1074-1995: IEEE Standard for Developing Software Life Cycle

Processes.
23. ISO/IEC, 15504-2: Information Technology-Software Process Assessment-Part 2: A

Reference Model for Processes and Process Capability, 1998.
24. ISO/IEC (1998), FDIS 14764: Software Engineering-Software Maintenance (draft),

Dec. 1998.
25. ISO/IEC (2002), FDIS 15939: Software Engineering-Software Measurement Process

(draft), Jan. 2002.
26. M. Kajko-Mattsson, Common concept apparatus within corrective software

maintenance, in Proc. IEEE Int. Conf. on Software Maintenance (ICSM’99), Oxford,
UK, 1999, pp. 287–296.

27. M. Kajko-Mattsson, Towards a business maintenance model, in Proc. IEEE Int. Conf.

on Software Maintenance (ICSM), Florence, Italy, 2001, pp. 500–509.
28. B. A. Kitchenham, R. T. Hughes, and S. G. Linkman, Modelling software measure-

ment data, IEEE Trans. on Software Engineering 27(9) (2001) 788–804.
29. B. A. Kitchenham, G. H. Travassos, A. Mayrhauser, F. Niessink, N. F. Schneidewind,

J. Singer, S. Takada, R. Vehvilainen, and H. Yang, Towards an ontology of software
maintenance, J. Software Maintenance: Research and Practice 11 (1999) 365–389.

30. M. Klein, Combining and relating ontologies: An analysis of problems and solutions, in
Proc. Workshop on Ontologies and Information Sharing (IJCAI’2001), Seattle, USA,
2001.

31. C. Liu, X. Lin, X. Zhou, and M. Orlowska, Building a repository for workflow systems,
in Proc. 31st Int. Conf. on Technology of Object-Oriented Language and Systems,
1999, pp. 348–357.

32. L. A. Loof de, Information Systems Outsourcing Decision Making: A Managerial

Approach (IDEA Group Publishing, Hershey, PA, 1997).
33. A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz, Ontologies for enterprise

knowledge management, IEEE Intelligent Systems, 2003, pp. 26–33.
34. L. McGinty and B. Smyth, Collaborative case-based reasoning: Applications in

personalised route planning, in Proc. 4th Int. Conf. on Case-Based Reasoning, Berlin,
2001.

35. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder, An Environment for Merging and

Testing Large Ontologies, 2000, pp. 483–493.
36. J. Mylopoulos, Information modelling in the time of the revolution, Information

Systems 23(3-4) (1998) 127–155.
37. J. Mylopoulos, Ontologies, http://www.cs.toronto.edu/∼jm/2510S/Notes02/Onto-

logies.pdf. Visited on 4th November, 2002., 2001.
38. C. Ocampo and P. Botella, Some reflections on applying workflow technology to

software processes, Universitat Politecnica de Catalunya, Computer Science Systems
Department, Technical Report TR-LSI-98-5-R, Barcelona, Spain, 1998.

39. E. Ostergag, J. Hendler, R. Prieto-D́ıaz, and C. Braun, Computing similarity in a
reuse library system: An AI-based approach, ACM Trans. on Software Engineering

and Methodology 1(3) (1992) 205–228.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

July 2, 2004 17:31 WSPC/117-ijseke 00164

An Ontology for the Management of Software Maintenance Projects 349

40. T. M. Pigoski, Practical Software Maintenance. Best Practices for Managing Your

Investment (John Wiley & Sons, 1997).
41. H. S. Pinto and J. P. Martins, Ontology integrations: How to perform the process, in

Proc. Workshop on Ontologies and Information Sharing (IJCAI’2001), Seattle, USA,
2001, pp. 71–80.

42. M. Polo, M. Piattini, F. Ruiz, and C. Calero, Roles in the maintenance process,
Software Engineering Notes, Special Interest Group on Software Engineering, ACM

24(4) (1999) 84–86.
43. M. Polo, M. Piattini, F. Ruiz, and C. Calero, MANTEMA: A complete rigorous

methodology for supporting maintenance based on the ISO/IEC 12207 standard,
in Proc. Third Euromicro Conference on Software Maintenance and Reengineering

(CSMR’99), Amsterdam, The Netherlands, 1999, pp. 178–181.
44. Project Management Institute, PMBOK: A Guide to the Project Management Body

of Knowledge, 2000 edn., PMI Communications, USA, 2000.
45. F. Ruiz, F. Garćıa, M. Piattini, and M. Polo, Environment for Managing Software

Maintenance Projects: Ideal Group Publishing, chapter X, 2002, pp. 255–290.
46. F. Ruiz, M. Piattini, F. Garćıa, and M. Polo, An XMI-based repository for soft-

ware process meta-modelling, in Proc. Product Focused Software Process Improvement

(PROFES’2002), Rovaniemi, Finland, 2002, pp. 546–558.
47. F. Ruiz, M. Piattini, and M. Polo, Using metamodels and workflows in a software

maintenance environment, in Proc. VII Argentine Congress on Computer Science

(CACIC’01), El Calafate, Argentina, 2001.
48. F. Ruiz, M. Piattini, M. Polo, and C. Calero, Types in the MANTEMA methodology,

in Proc. Int. Conf. on Enterprise Information Systems (ICEIS’99), Setubal, Portugal,
1999, pp. 192–202.

49. W. Sadiq and M. E. Orlowska, On capturing process requirements of workflow
based business information systems, in Proc. 3rd Conference on Business Information

Systems (BIS’99), Poznan, Polonia, 1999, pp. 195–209.
50. S. Staab, H.-P. Schnurr, and Y. Sure, Knowledge processes and ontologies, IEEE

Intelligent Systems 16(1) (2001) 26–34.
51. C. Tautz and C. G. Von Wangenheim, REFSENO: A Representation Formalism for

Software Engineering Ontologies, Fraunhofer IESE-Report No. 015.98/E, version 1.1,
October 20, 1998.

52. M. Uschold and M. Gruninger, Ontologies: Principles, methods, and applications, The

Knowledge Engineering Review 11(2) (1996) 93–136.
53. G. Van Heijst, S. Falasconi, A. Abu-Hanna, T. Schreiber, and M. Stefanelli, A case

study in ontology library construction, Artificial Intelligence in Medicine 7 (1995)
227–255.

54. A. Vizcáıno, F. Ruiz, J. Favela, and M. Piattini, A multi-agent architecture for knowl-
edge management in software maintenance, in Proc. Int. Workshop on Practical Appli-

cations of Agents and Multiagent Systems (IWPAAMS’02), Salamanca, Spain, 2002,
pp. 39–52.

55. WfMC (1999), TC-1016-P 1.1: Interface 1: Process Definition Interchange Pro-
cess Model. Workflow Management Coalition, October 1999, http://www.wfmc.org/
standards/docs.htm.,1999.

56. WfMC (1995), TC-1003 1.1: The Workflow Reference Model. Workflow Management
Coalition, January 1995, http://www.wfmc.org/standars/docs.htm, 1995.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

4.
14

:3
23

-3
49

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

ST
IL

L
A

-L
A

 M
A

N
C

H
A

 (
U

C
L

M
)

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n

04
/2

0/
20

. R
e-

us
e

an
d

di
st

ri
bu

tio
n

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s

ar
tic

le
s.

